Lecture 6: Convergence of random variables

STAT205 Lecturer: Jim Pitman Scribe: Tye Lidman <tlid@berkeley.edu>

(These notes are a revision of the work of Jin Kim, 2002.)

6.1 Convergence of random variables

First significant example: the *weak law of large numbers (WLLN)*. We want to state that with a general notion of convergence in probability.

Definition 6.1 Given a sequence of r.v's X_n defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, say X_n converges in probability to X, $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$, if X is a r.v. on (Ω, \mathcal{F}) , and for all $\epsilon > 0$,

$$\lim_{m \to \infty} \mathbb{P}(|X_n - X| > \epsilon) = 0.$$

Theorem 6.2 (Weak Law of Large Numbers) Let X, X_1, X_2, \ldots be i.i.d. with $\mathbb{E}|X| < \infty$. Then

$$\frac{1}{n}\sum_{i=1}^{n}X_{i} \stackrel{\mathbb{P}}{\longrightarrow} \mathbb{E}(X).$$

Other notions of convergence of r.v.'s:

Simplest: (discussed in previous lectures) is \rightarrow .

Pointwise Convergence: $X_n(\omega) \to X(\omega)$ for all $\omega \in \Omega$. This is a very strong notion: too strong for many purposes.

Almost Sure Convergence: We say $X_n \xrightarrow{a.s.} X$ if $X_n(\omega) \to X(\omega)$ for all $\omega \notin N$, with $\mathbb{P}(N) = 0$, or equivalently $\mathbb{P}(\omega : X_n(\omega) \to X(\omega) \text{ as } n \to \infty) = 1$.

Convergence in L^p $(p \ge 1)$: We say $X_n \xrightarrow{L^p} X$ if $||X_n - X||_p \to 0$, i.e. $\lim_{n\to\infty} \mathbb{E}|X_n - X|^p = 0$.

Convergence in Distribution: (Not really a notion of convergence of r.v.) A notion of convergence of a probability distribution on \mathbb{R} (or more general space). We say $X_n \stackrel{d}{\longrightarrow} X$ if $\mathbb{P}(X_n \leq x) \to \mathbb{P}(X \leq x)$ for all x at which the RHS is continuous.

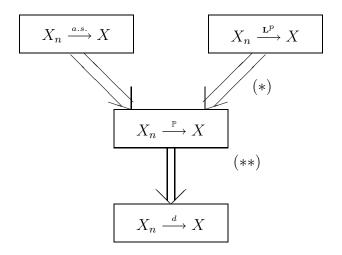
This weak convergence appears in the central limit theorem.

Fact 6.3 (See text) $X_n \stackrel{d}{\longrightarrow} X \iff \mathbb{E}f(X_n) \longrightarrow \mathbb{E}f(X)$ for all bounded and continuous function f.

Properties in Common for $\xrightarrow{\mathbb{P}}$, $\xrightarrow{p.w.}$, $\xrightarrow{a.s.}$, $\xrightarrow{\mathbf{L}^p}$:

- a) $X_n \to X$, $Y_n \to Y \Longrightarrow X_n + Y_n \to X + Y$, $X_n Y_n \to XY$.
- b) $X_n \to X \iff (X_n X) \to 0$ (useful and common reduction).
- c) For all of $\xrightarrow{\mathbb{P}}$, $\xrightarrow{a.s.}$, and $\xrightarrow{\mathbf{L}^p}$ the limit X is unique up to a.s. equivalence.
- d) Cauchy sequences are convergent (completeness). (Need a metric to metrize $\stackrel{\mathbb{P}}{\longrightarrow}$, but that is easily provided. See text.)

Theorem 6.4 The following property holds among the types of convergence.



Proof: (*) can be proved by Chebyshev's inequality (with usually p = 2):

$$\mathbb{P}(|X_n - X| > \epsilon) \le \frac{\mathbb{E}(|X_n - X|^p)}{\epsilon^p}$$

(**) is proved in the text.

Example 6.5 (Moving blip) (An example showing that almost sure convergence is a stronger condition than convergence in probability.) On [0,1] with Lebesgue measure, define $X_n = 1_{(x_n, x_n+1)}$ where the addition is interpreted as modulo 1 and x_n is any sequence with: $x_{n+1} - x_n \to 0$ as $x_n \uparrow \infty$ (e.g. $x_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$ or $x_n = \log n$). $\mathbb{P}(|X_n| > \epsilon) = X_{n+1} - X_n \to 0$ for all $0 < \epsilon < 1 \Longrightarrow X_n \stackrel{\mathbb{P}}{\longrightarrow} 0$, but X_n does not converge almost surely to 0.

Example 6.6 Suppose that X_1, X_2, \ldots are r.v.'s that have mean 0, have finite variances, and are uncorrelated. Let $S_n = X_1 + \cdots + X_n$. If $\sum_{k=1}^{\infty} \mathbb{E}(X_k^2) < \infty$, then S_n converges in L^2 to a limit S_{∞} , hence $S_n \stackrel{\mathbb{P}}{\longrightarrow} S_{\infty}$, i.e. $\lim_{n \to \infty} \mathbb{P}(|S_n - S_{\infty}| > \epsilon) = 0$ for all $\epsilon > 0$.

Proof: Look at the Cauchy criterion. Take m > n:

$$\mathbb{E}(S_m - S_n)^2 = \mathbb{E}\left(\sum_{k=n+1}^m X_k\right)^2 = \sum_{k=n+1}^m \mathbb{E}(X_k^2) \to 0$$

as $m, n \to \infty$. Therefore,

$$\sum_{k=1}^{\infty} \mathbb{E}(X_k^2) < \infty.$$

Fact 6.7 If the X_n are independent (or more generally, martingale distributions), then $S_n \xrightarrow{a.s.} S_{\infty}$.

The proof of this fact is deferred.

Fact 6.8 (Stout's Almost Sure Convergence) There are examples of uncorrelated sequences with $\sum_n X_n^2 < \infty$ where a.s. convergence fails.

6.2 Preliminaries for Study of a.s. Convergence

Definition 6.9 Let q_n be some statement, true or false for each n. We say q_n infinitely often or $(q_n \ i.o.)$ if for all n there is $m \ge n$ such that q_m is true, and $(q_n \ ev.)$ if there exists n such that for all $m \ge n$, q_m is true. Now let q_n depend on ω , giving events

$$A_n = \{\omega : q_n(\omega) \text{ is true}\}.$$

We now have new events,

$$\{A_n \ i.o.\} = \{\omega : \omega \in A_n \ i.o.\} = \bigcap_{n} \bigcup_{m \ge n} A_m,$$

and

$${A_n \ ev.} = \bigcup_n \bigcap_{m \ge n} A_m.$$

In analysis, $1_{(A_n \text{ i.o.})} = \lim_{n \to \infty} \sup_{m \ge n} 1_{A_m}$ and $1_{(A_n \text{ ev.})} = \lim_{n \to \infty} \inf_{m \ge n} 1_{A_m}$.

Given a sequence of events A_n for each $\omega \in \Omega$, consider $1_{A_n(\omega)}$ as a function of n, $\omega \longmapsto (1,0,0,1,\ldots)$.

Notice (de Morgan) that $\{A_n \text{ i.o.}\}^c = \{A_n^c \text{ ev.}\}$ and $\{A_n \text{ ev.}\}^c = \{A_n^c \text{ i.o.}\}$

Observe $X_n \xrightarrow{a.s.} X \iff \forall \epsilon > 0, \mathbb{P}(|X_n - X| > \epsilon \text{ i.o.}) = 0.$

Argue this (Facts about convergence) $X_n \to X \iff \forall \epsilon > 0, |X_n - X| < \epsilon \text{ ev.},$ so

$$X_n \xrightarrow{a.s.} X \iff \forall \epsilon > 0, \ \mathbb{P}(|X_n - X| \le \epsilon \text{ ev.}) = 1$$

$$\iff \forall \epsilon > 0, \ \mathbb{P}(|X_n - X| > \epsilon \text{ i.o.}) = 0.$$