
Lecture 6 : Convergence of random variables

STAT205 Lecturer: Jim Pitman Scribe: Tye Lidman <tlid@berkeley.edu>

(These notes are a revision of the work of Jin Kim, 2002.)

6.1 Convergence of random variables

First significant example: the weak law of large numbers (WLLN). We want to state
that with a general notion of convergence in probability.

Definition 6.1 Given a sequence of r.v’s Xn defined on a probability space (Ω,F , P),

say Xn converges in probability to X, Xn
P

−→ X, if X is a r.v. on (Ω,F), and for
all ε > 0,

lim
m→∞

P(|Xn − X| > ε) = 0.

Theorem 6.2 (Weak Law of Large Numbers) Let X, X1, X2, . . . be i.i.d. with
E|X| < ∞. Then

1

n

n
∑

i=1

Xi
P

−→ E(X).

Other notions of convergence of r.v.’s:

Simplest: (discussed in previous lectures) is →.

Pointwise Convergence: Xn(ω) → X(ω) for all ω ∈ Ω. This is a very strong
notion: too strong for many purposes.

Almost Sure Convergence: We say Xn
a.s.

−→ X if Xn(ω) → X(ω) for all ω 6∈ N ,
with P(N) = 0, or equivalently P(ω : Xn(ω) → X(ω) as n → ∞) = 1.

Convergence in Lp (p ≥ 1): We say Xn
L

p

−→ X if ‖Xn − X‖p → 0, i.e.
limn→∞ E|Xn − X|p = 0.

Convergence in Distribution: (Not really a notion of convergence of r.v.) A
notion of convergence of a probability distribution on R (or more general space). We

say Xn
d

−→ X if P(Xn ≤ x) → P(X ≤ x) for all x at which the RHS is continuous.

This weak convergence appears in the central limit theorem.
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Fact 6.3 (See text) Xn
d

−→ X ⇐⇒ Ef(Xn) −→ Ef(X) for all bounded and con-
tinuous function f .

Properties in Common for
P

−→,
p.w.
−→,

a.s.

−→,
L

p

−→:

a) Xn → X, Yn → Y =⇒ Xn + Yn → X + Y , XnYn → XY .

b) Xn → X ⇐⇒ (Xn − X) → 0 (useful and common reduction).

c) For all of
P

−→,
a.s.

−→, and
L

p

−→ the limit X is unique up to a.s. equivalence.

d) Cauchy sequences are convergent (completeness). (Need a metric to metrize
P

−→,
but that is easily provided. See text.)

Theorem 6.4 The following property holds among the types of convergence.

Xn
a.s.

−→ X Xn
L

p

−→ X

Xn
P

−→ X

Xn
d

−→ X
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Proof: (∗) can be proved by Chebyshev’s inequality (with usually p = 2):

P(|Xn − X| > ε) ≤
E(|Xn − X|p)

εp

(∗∗) is proved in the text.

Example 6.5 (Moving blip) (An example showing that almost sure convergence is
a stronger condition than convergence in probability.) On [0, 1] with Lebesgue measure,
define Xn = 1(xn, xn+1) where the addition is interpreted as modulo 1 and xn is any
sequence with: xn+1 − xn → 0 as xn ↑ ∞ (e.g. xn = 1 + 1

2
+ · · · + 1

n
or xn = log n).

P(|Xn| > ε) = Xn+1 − Xn → 0 for all 0 < ε < 1 =⇒ Xn
P

−→ 0, but Xn does not
converge almost surely to 0.
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Example 6.6 Suppose that X1, X2, . . . are r.v.’s that have mean 0, have finite vari-
ances, and are uncorrelated. Let Sn = X1 + · · · + Xn. If

∑∞

k=1 E(X2
k) < ∞, then Sn

converges in L2 to a limit S∞, hence Sn
P

−→ S∞, i.e. limn→∞ P(|Sn − S∞| > ε) = 0
for all ε > 0.

Proof: Look at the Cauchy criterion. Take m > n:

E(Sm − Sn)2 = E

(

m
∑

k=n+1

Xk

)2

=

m
∑

k=n+1

E(X2
k) → 0

as m, n → ∞. Therefore,
∞
∑

k=1

E(X2
k) < ∞.

Fact 6.7 If the Xn are independent (or more generally, martingale distributions),
then Sn

a.s.

−→ S∞.

The proof of this fact is deferred.

Fact 6.8 (Stout’s Almost Sure Convergence) There are examples of uncorre-
lated sequences with

∑

n X2
n < ∞ where a.s. convergence fails.

6.2 Preliminaries for Study of a.s. Convergence

Definition 6.9 Let qn be some statement, true or false for each n. We say qn in-
finitely often or (qn i.o.) if for all n there is m ≥ n such that qm is true, and (qn ev.)
if there exists n such that for all m ≥ n, qm is true. Now let qn depend on ω, giving
events

An = {ω : qn(ω) is true}.

We now have new events,

{An i.o.} = {ω : ω ∈ An i.o.} =
⋂

n

⋃

m≥n

Am,

and
{An ev.} =

⋃

n

⋂

m≥n

Am.
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In analysis, 1(An i.o.) = limn→∞ supm≥n 1Am
and 1(An ev.) = limn→∞ infm≥n 1Am

.

Given a sequence of events An for each ω ∈ Ω, consider 1An(ω) as a function of n,
ω 7−→ (1, 0, 0, 1, . . . ).

Notice (de Morgan) that {An i.o.}c = {Ac
n ev.} and {An ev.}c = {Ac

n i.o.}

Observe Xn
a.s.

−→ X ⇐⇒ ∀ε > 0, P(|Xn − X| > ε i.o.) = 0.

Argue this (Facts about convergence) Xn → X ⇐⇒ ∀ε > 0, |Xn − X| < ε ev.,
so

Xn
a.s.

−→ X ⇐⇒ ∀ε > 0, P(|Xn − X| ≤ ε ev.) = 1

⇐⇒ ∀ε > 0, P(|Xn − X| > ε i.o.) = 0.


